Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Crit Care ; 26(1): 225, 2022 07 25.
Article in English | MEDLINE | ID: covidwho-1962881

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) has been reported as a frequent complication of critical COVID-19. We aimed to evaluate the occurrence of AKI and use of kidney replacement therapy (KRT) in critical COVID-19, to assess patient and kidney outcomes and risk factors for AKI and differences in outcome when the diagnosis of AKI is based on urine output (UO) or on serum creatinine (sCr). METHODS: Multicenter, retrospective cohort analysis of patients with critical COVID-19 in seven large hospitals in Belgium. AKI was defined according to KDIGO within 21 days after ICU admission. Multivariable logistic regression analysis was used to explore the risk factors for developing AKI and to assess the association between AKI and ICU mortality. RESULTS: Of 1286 patients, 85.1% had AKI, and KRT was used in 9.8%. Older age, obesity, a higher APACHE II score and use of mechanical ventilation at day 1 of ICU stay were associated with an increased risk for AKI. After multivariable adjustment, all AKI stages were associated with ICU mortality. AKI was based on sCr in 40.1% and UO in 81.5% of patients. All AKI stages based on sCr and AKI stage 3 based on UO were associated with ICU mortality. Persistent AKI was present in 88.6% and acute kidney disease (AKD) in 87.6%. Rapid reversal of AKI yielded a better prognosis compared to persistent AKI and AKD. Kidney recovery was observed in 47.4% of surviving AKI patients. CONCLUSIONS: Over 80% of critically ill COVID-19 patients had AKI. This was driven by the high occurrence rate of AKI defined by UO criteria. All AKI stages were associated with mortality (NCT04997915).


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Belgium/epidemiology , COVID-19/complications , Cohort Studies , Critical Illness , Hospitals , Humans , Intensive Care Units , Retrospective Studies
2.
J Clin Microbiol ; 60(4): e0229821, 2022 04 20.
Article in English | MEDLINE | ID: covidwho-1759280

ABSTRACT

Critically ill patients with coronavirus disease 2019 (COVID-19) may develop COVID-19-associated pulmonary aspergillosis (CAPA), which impacts their chances of survival. Whether positive bronchoalveolar lavage fluid (BALF) mycological tests can be used as a survival proxy remains unknown. We conducted a post hoc analysis of a previous multicenter, multinational observational study with the aim of assessing the differential prognostic impact of BALF mycological tests, namely, positive (optical density index of ≥1.0) BALF galactomannan (GM) and positive BALF Aspergillus culture alone or in combination for critically ill patients with COVID-19. Of the 592 critically ill patients with COVID-19 enrolled in the main study, 218 were included in this post hoc analysis, as they had both test results available. CAPA was diagnosed in 56/218 patients (26%). Most cases were probable CAPA (51/56 [91%]) and fewer were proven CAPA (5/56 [9%]). In the final multivariable model adjusted for between-center heterogeneity, an independent association with 90-day mortality was observed for the combination of positive BALF GM and positive BALF Aspergillus culture in comparison with both tests negative (hazard ratio, 2.53; 95% CI confidence interval [CI], 1.28 to 5.02; P = 0.008). The other independent predictors of 90-day mortality were increasing age and active malignant disease. In conclusion, the combination of positive BALF GM and positive BALF Aspergillus culture was associated with increased 90-day mortality in critically ill patients with COVID-19. Additional study is needed to explore the possible prognostic value of other BALF markers.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Aspergillus , Bronchoalveolar Lavage Fluid , COVID-19/complications , Critical Illness , Galactose/analogs & derivatives , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/complications , Invasive Pulmonary Aspergillosis/diagnosis , Mannans , Mycology , Prognosis , Sensitivity and Specificity
3.
Emerg Infect Dis ; 27(11): 2892-2898, 2021 11.
Article in English | MEDLINE | ID: covidwho-1551452

ABSTRACT

We performed an observational study to investigate intensive care unit incidence, risk factors, and outcomes of coronavirus disease-associated pulmonary aspergillosis (CAPA). We found 10%-15% CAPA incidence among 823 patients in 2 cohorts. Several factors were independently associated with CAPA in 1 cohort and mortality rates were 43%-52%.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Cohort Studies , Humans , SARS-CoV-2
4.
Clin Microbiol Infect ; 28(4): 580-587, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1375916

ABSTRACT

OBJECTIVES: Coronavirus disease 2019 (COVID-19) -associated pulmonary aspergillosis (CAPA) has emerged as a complication in critically ill COVID-19 patients. The objectives of this multinational study were to determine the prevalence of CAPA in patients with COVID-19 in intensive care units (ICU) and to investigate risk factors for CAPA as well as outcome. METHODS: The European Confederation of Medical Mycology (ECMM) conducted a multinational study including 20 centres from nine countries to assess epidemiology, risk factors and outcome of CAPA. CAPA was defined according to the 2020 ECMM/ISHAM consensus definitions. RESULTS: A total of 592 patients were included in this study, including 11 (1.9%) patients with histologically proven CAPA, 80 (13.5%) with probable CAPA, 18 (3%) with possible CAPA and 483 (81.6%) without CAPA. CAPA was diagnosed a median of 8 days (range 0-31 days) after ICU admission predominantly in older patients (adjusted hazard ratio (aHR) 1.04 per year; 95% CI 1.02-1.06) with any form of invasive respiratory support (HR 3.4; 95% CI 1.84-6.25) and receiving tocilizumab (HR 2.45; 95% CI 1.41-4.25). Median prevalence of CAPA per centre was 10.7% (range 1.7%-26.8%). CAPA was associated with significantly lower 90-day ICU survival rate (29% in patients with CAPA versus 57% in patients without CAPA; Mantel-Byar p < 0.001) and remained an independent negative prognostic variable after adjusting for other predictors of survival (HR 2.14; 95% CI 1.59-2.87, p ≤ 0.001). CONCLUSION: Prevalence of CAPA varied between centres. CAPA was significantly more prevalent among older patients, patients receiving invasive ventilation and patients receiving tocilizumab, and was an independent strong predictor of ICU mortality.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Aged , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Critical Illness , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/epidemiology , Mycology , Pulmonary Aspergillosis/complications , Pulmonary Aspergillosis/epidemiology , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL